
How-To: Kestrel Web Server in ASP.NET Core Application

In this article, I am going to discuss the Kestrel Web Server in ASP.NET Core Application.
Please read our previous article before proceeding to this article where we

discussed ASP.NET Core InProcess Hosting Model. At the end of our previous article, we
discussed that with the OutOfProcess hosting model, there are 2 web servers i.e. one internal

web server and one external web server. The internal web server is called Kestrel and the

external web server can be IIS, Apache, or Nginx. As part of this article, we are going to
discuss the following two important concepts in detail.

1. What is a Kestrel Web Server?

2. How to Configure Kestrel Web Server?

3. How to run a .NET Core application using Kestrel Web Server?

4. How to run a .NET Core Application using .NET Core CLI.

What is a Kestrel Web Server?

As we already discussed ASP.NET Core is a cross-platform framework. It means it supports

to develop and run applications on different types of operating systems such as Windows,
Linux, or Mac.

The Kestrel is the cross-platform web server for the ASP.NET Core application. That means

this Server supports all the platforms and versions that the ASP.NET Core supports. By

default, it is included as the internal web server in the .NET Core application.
The Kestrel Web Server generally used as an edge server i.e. the internet-facing web server

which directly processes the incoming HTTP request from the client. In the case of the Kestrel
web server, the process name that is used to host and run the ASP.NET Core application

is the project name.

As of now, we are using visual studio to run the ASP.NET Core application. By default, the
visual studio uses IIS Express to host and run the ASP.NET Core application. So, the

process name is IIS Express that we already discussed in our previous article.

How to run the application using Kestrel Web Server?

Before using the Kestrel server to run our application, let us first open

the launchSettings.json f ile which is present inside the Properties folder of your application.
Once you open the launchSettings.json file you will f ind the following code by default.

https://dotnettutorials.net/lesson/asp-net-core-inprocess-hosting/
https://dotnettutorials.net/lesson/asp-net-core-launchsettings-json-file/

In our upcoming article, we will discuss launchSettings.json in detail. But for now, just have a
look at the Profiles section. Here, you can see, we have two sections. One is for IIS Express

(IIS Server) and the other one is for the Kestrel server. In visual studio, you can find the above
two profiles (IIS Express and FirstCoreWebApplication) as shown below.

https://dotnettutorials.net/lesson/asp-net-core-launchsettings-json-file/

If you select IIS Express then it will use the IIS server and if you select
FirstCoreWebApplication, then it will use Kestrel Server.

Running the application using IIS Express:

If you run the application using IIS Express, then it will use the URL and port number

mentioned in the iisSettings of your launchSettings.json file. To prove this run the application
using IIS Express and see the output as shown below.

Running the application using Kestrel Server:

In order to use the Kestrel server to run your application in Visual Studio, first, you need to
select the FirstCoreWebApplication profile as shown below.

Once you select the FirstCoreWebApplication, now run the application. Here, we need to
observe two things. First, it will launch the command prompt and host the application using

the Kestrel server as shown below. Here, you need to focus on the URL and port number and
it should be the URL and port number mentioned in your FirstCoreWebApplication profile of

launchSettings.json file.

Secondly, it opens the default browser and listening to that URL and Port Number as shown

below.

Note: In our example, for IIS Express the port number is 60211, and worker process is

iisexpress while for Kestrel server the port number is 5000 and the worker process name is
FirstCoreWebApplication (It is nothing but your application name).

How to run .NET Core application using .NET Core CLI?

We can also run the ASP.NET Core application from the command line using the .NET Core

CLI. The CLI stands for Command Line Interface.
When we run an ASP.NET Core application using the .NET Core CLI, then the .NET Core

runtime uses Kestrel as the webserver. We will discuss the .NET Core CLI in detail in our
upcoming article. Now, let us see how to run a dot net core application using .NET Core CLI

Command.

First. open the command prompt and type “dotnet —” and press enter as shown below.

Once you type the “dotnet —” and click on the enter button then you will f ind lots of

commands as shown below.

Using the CLI (above commands)

You can create a new project using the new command, you can also build the project using

the build command, or you can publish the project using the publish command. It is possible
to restore the dependencies and tools which are required for a .net core project using the CLI.

Running .NET Core application using .NET Core CLI

Let’s see how to run a .NET Core application using .NET Core CLI command. To do so please

follow the below steps

First, open the Windows Command Prompt. To do so, open the run window and then type
cmd and click on the enter button which will open the command prompt. Then you need to

change the directory to the folder which contains your asp.net core application. My project is
present in the “D:\Projects\Core\FirstCoreWebApplication\FirstCoreWebApplication ”

folder so I change the current directory to my project file by using the following command.

Once you change the directory to your project folder, then execute the “dotnet run” command

as shown in the below image.

Once you type the dotnet run command, press the enter key, then the .NET Core CLI builds

and runs the application. It also shows the URL and you can use this URL to access your
application as shown in the below image.

Here, in my case, the application is available at http://localhost:5000. If you remember this
port is configured in the launchSettings.json file of your application inside the

FirstCoreWebApplication profile which is nothing but the profile for the Kestrel server. Now
open the browser and navigate to the http://localhost:5000 URL and It should display the

worker process name as dotnet as shown below.

http://localhost:5000/

Changing the Port Number:

If you want then you can also change the Port number for Kestrel Server. To do so open the
launchSettings.json file and give any available Port number as shown below. Here, I am

changing the Port number to 60222.

Now, save the changes and run the application using Kestrel Server and you should see the
changed port number in the URL.

In the next article, we will discuss the OutOfProcess hosting in the ASP.NET Core application.
Here, in this article, I try to explain the Kestrel Web Server in ASP.NET Core application in

detail. I hope this article will help you to understand the Kestrel Web Server in ASP.NET

Core Application.

https://dotnettutorials.net/lesson/asp-net-core-outofprocess-hosting/

Courtesy: https://dotnettutorials.net/lesson/kestrel-web-server-asp-net-core/

Modified: 2021.10.04.7.29.AM
Dököll Solutions, Inc.

https://dotnettutorials.net/lesson/kestrel-web-server-asp-net-core/

